Constraining the correlation distance in quantum measurements from the Moon Version 10 May 2010

> Jean Schneider LUTh – Paris Observatory

- Reminder of Bell inequalities The latest test
- Spatio-temporal dependance of correlations?
- Lunar and other tests

updates and developments at http://luth7.obspm.fr/~schneider/qm.html

Reminder: rules of Quantum Physics

RO An experiment can be divided into an <u>apparatus</u> and a <u>system</u>

R4 Experiments lead to observables described by $A \in Herm(Hilb)$ Observable e **R5** Only possible results of measurements of A are proper values $a_i \quad A\psi_i = a_i\psi_i$ **R6** Results of measurements are random with probabilities $p_i = |\langle \psi | \psi_i \rangle|^2$

R7 After a measurement the system is in a state Ψ_i

Comment on rules of Quantum Physics

- The mathematics of rules: no problem, universal consensus
- The rules also contain words from plain language:
 - apparatus », « experiment », « measurement »,
 observable », « result »

These common-language, unavoidable, words are the source of controversies in the understanding of quantum physics.

A problem with quantum rules

Question: what is the meaning of superposed states?

Let |+/-x> be the eigenstate of σ_x for the proper value +/-1/2

 $|+/-x>=(|+y>+/-|-y>)/\sqrt{2}$

The measurement of σ_v gives +1/2 or -1/2 with probability 50%

==> Two possible views (or « interpretations »):

- 1/ $|+x\rangle \ll has \gg no definite value of <math>\sigma_v$ prior to measurement (QM)
- 2/ $|+x\rangle \ll has \gg a$ definite value of σ_v but it is unknown.

A complete description of the state $|+x\rangle$ then requires extra « hidden » parameters .

(similar e.g. to positions and velocities of individual molecules of a gaz with temperature T)

A problem with quantum rules

Hidden parameters $\,\lambda\,$ with distribution probability $\,\rho(\lambda)\,$

 $|x\rangle \longrightarrow |x, \lambda\rangle$

Bell theorem

Consider then a 0 spin system decaying into 2 spin ½ systems 1 and 2 (inspired by Einstein-Podolski-Rosen paradox EPR)

Conservation of spin ==> in any direction *a*,

$$(\boldsymbol{\sigma}_{\boldsymbol{a}})_{\boldsymbol{2}} = -(\boldsymbol{\sigma}_{\boldsymbol{a}})_{\boldsymbol{1}}$$

Bell theorem (2)

4 statistical correlations:

 $C(0, \pi/8), C(0, 3\pi/8), C(\pi/4, \pi/8), C(\pi/4, 3\pi/8)$

Suppose λ attached to 1 and 2 (local hidden variables)
 Prediction from local hidden (Bell theorem)
 C(0, π/8)-C(0,3π/8)+C(π/4,π/8)-C(π/4,3π/8)<2
 whatever p(λ)
 Prediction from standard MQ :

 $C(0, \pi/8) - C(0, 3\pi/8) + C(\pi/4, \pi/8) - C(\pi/4, 3\pi/8) = \frac{2\sqrt{2}}{2}$

Bell theorem (3)

- Other possibility: non-local hidden parameters
- A physical model (Bohm, Vigier et al ~'60):
 - Waves are « real physical objects »
 - Quantum system made of/embedded in a « subquatum », chaotic, medium in which hidden parameters propagate at a speed >>> c.
 - These hidden parameters behave as « effective » non local parameters
 - Then possible to reconcile these hidden parameters with prediction of standard QM

Bell theorem (4)

- QM ==> Instantaneous statistical correlation at a distance whatever the distance between detectors (propagation speed V infinite)
- Experiment confirms prediction of standard QM

Tested until 18 km between 2 detectors (V > $10^7 c$)

Spatio-temporal dependance of correlations ? (1)

Questions:

- Does the correlation distance D go until infinity ?
 (even beyond the cosmological horizon ?)
- Is the « correlation speed » V necessarily infinite ?

Standard QM: YES

B.-V's or other theories answer: ??

4 possibilities:

- D infinite, V infinite (standard QM)
- D infinite, V finite (« dynamic correlation »)
- D finite, V infinite (« static correlation »)
- D finite, V finite (« dynamic correlation »)

What distance D_o and speed V of correlation?

• Play only with *G*, *h*, *c*

$$D = \sqrt{\frac{Gh}{c^3}} = 10^{-33} cm \qquad \qquad V = c$$

• Play also with m_{Q} (quark mass, Higgs mass...)

$$D = \sqrt{\frac{Gh}{c^{3}}} \left(\frac{Gm_{Q}^{2}}{hc}\right)^{N} = 10^{-33-39N} cm \qquad V = \left(\frac{Gm_{Q}^{2}}{hc}\right)^{N} c = 10^{-39N} c$$

- Play with non standard phenomena
 - « 5th force »: $D \sim 1 cm 1 m$
 - MOND (dark matter): $D \sim 1 Mpc$
 - Cosmological constant D = 10 Gpc

Conclusion: no obvious prediction

A test

Idea: measure D_o and V

e.g. $C(\theta, \theta', D) = C_o(D_o/D)^{-n}$ or $C(\theta, \theta', D) = C_o(1 - e^{-D/D_o})$

(e.g. Introduce a dissipative term in Schröd. eq.: $d\psi/dt = iH\psi + [\rho, H]$)

- ==> Extend as much as possible the distance of measurement of correlations
- e.g.: **Earth-Moon distance** (18 km ---> 400.000 km)
- ==> Put the (orientable) polarizers and detectors on the Moon Put the laser source on the Earth and point it toward the Moon..

Remark: influence of gravitational waves background negligeable (Raynaud, Lamine et al. GRG 36, 2271, 2004)

A fundamental question

Mirror

Suppose mirror on the Moon and detectors on Earth Easier to do than to put detectors and tunable polarizers on the Moon

MQ: Correl. distance = distance between detectors D1 BV: Correl. distance = distance of propagation D2?

Question:

```
System = 2 photons

Apparatus = mirrors + detectors

or

System = 2 photons + mirrors

Apparatus = detectors

==>

Root of concept of measurement.

Strict QM: measurement = appearance of a number on a display

Naive view: measurement = system-apparatus interaction

12
```

A fundamental question

Strict QM: measurement = appearance of a number on a display

Naive view: measurement = system-apparatus interaction

An Earth-Moon laser

Mirror deposited on the Moon by Apollo

- The Apache Point Observatory's <u>3.5</u> meter telescope
 - Southern NM (Sunspot)
 - 9,200 ft (2800 m) elevation
 - Great "seeing": 1 arcsec

DOCUMENT

document title/ titre du document

DIRECTORATE OF HUMAN SPACEFLIGHT

ESA FIRST LUNAR LANDER: REQUEST FOR INFORMATION

See also: Science from the Moon (Burns et al) arXiv:0909.1509

Prospects for a Lunar Base

• Prerequisite to establish a permanent Lunar base: Water

Permanent at the frozen polar regions (T= 100 K) ? Natural sources:

- Bombardement by comets
- H+ in stellar wind + O in lunar rocks --> H20 ==> 10^{7-8} tons
- Check underway after NASA/LCROSS crash on the Moon (12 Oct)
- Plans to to establish a permanent Lunar base:
 - Under study: European Lunar Lander (ESA, Astrium/DLR)
 - Preparation: European, NASA « Lunar Science Institutes »
 - 23 October 2009: ESA+EU Ministerial Conference in Prague to establish « a policy in the field of exploration of our solar system, going back to the Moon ».

Other possibilities

• ISS: projet Space-QUEST (Ursin et al. 2008)

Problems:

- less room than on Moon
- distance = 400 km instead of 400.000 km
- duration of individual experiments: a few minutes/hour
- 400 km experiments will certainly become possible on Earth thanks to progress fiber optics
- Planet Mars (Kaltenbaek 2003): very futuristic
- LISA? (5 million km) See poster by Acef et al. for LISA lasers
- Transfer correlated quantum states in free boxes at the edge of he Solar System:

no technological possibility forseen